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In this paper a simple phenomenological description of the effects of coherent quantum and incoherent mutual
exchange of two deuteron nuclei in solid state transition metal complexes on their2H NMR spectra is given.
This description is based on the quantum-mechanical density matrix formalism developed by Alexander and
Binsch. Only the nuclear spin system is treated quantum mechanically. The quantum exchange interaction
in NMR is included in the nuclear spin Hamiltonian, and the interaction with the surrounding bath and
incoherent exchange processes are treated as phenomenological rate processes described by rate constants.
The incoherent exchange corresponds formally to 180° rotations or jumps of the D-D vector around an axis
perpendicular to this vector and averages the different quadrupole splitting of the two deuterons. In principle
the dideuteron pair will exist in several rovibrational states. However, if the interconversion among these
states is fast, the dideuteron exchange can be described by an average exchange coupling or tunnel frequency
X12 and a single average rate constantk12 of the incoherent exchange. It is shown that the incoherent exchange
gives rise to a relaxation of rate-2k12 between coherences created between states of different symmetry.
The2H NMR line shape of a dideuteron pair in the solid state as a function of tunnel and incoherent exchange
rate is studied numerically. For single crystals, the effects of coherent and incoherent exchange are strongly
different, in particular if the rate constants are on the order of the quadrupole splitting. The spectra of
nonoriented powder samples are more similar to each other. Nevertheless, our calculations show that there
are still pronounced differences, which should allow the distinction between coherent and incoherent exchange
even in nonoriented samples.

Introduction

The structure and dynamics of hydrogen in transition metal
polyhydrides is a matter of current experimental and theoretical
interest. Kubas et al.1,2 found dihydrogen unitsη-bound to the
transition metal. Today, a whole series of transition metal
polyhydrides with hydrogen distances varying between 0.8 and
1.7 Å is available.3 In these compounds the hydrogen atoms
are mobile; in particular, they are subject to a mutual exchange,
formally corresponding to 180° rotations involving a barrier with
a height depending on the chemical structure. If the rotational
barrier is zero, corresponding to free dihydrogen, the rotation
is a coherent quantum process leading to even rotational states
(p-H2) with antiparallel nuclear spins and to odd rotational states
(o-H2) with parallel spins. When a rotational barrier is
introduced by dihydrogen binding to a metal center, the energy
splitting between the lowestp-H2 ando-H2 states corresponds
to a coherent rotational tunnel splitting of frequencyνt. This
splitting can be observed by inelastic neutron scattering2 (INS)
when the barrier is small and the splittings are on the order of
terahertz. In the other extreme, when the barrier is large and
the tunnel splitting becomes of the order of typical1H chemical
shift differences (i.e., hertz to kilohertz) the tunnel splitting gives
rise to a quantum exchange couplingX12 ) Jexch in the NMR
spectra4,5 of the hydride pairs, which can be observed if each
hydride exhibits a different chemical shift.Jexch adds up with
the usual scalar magnetic couplingJmagn to an effectiveJ

coupling, as was recognized by Zilm et al.5a-d and Weitekamp
et al.5e Jexch represents an average over a large number of
rovibrational states as it increases strongly with increasing
temperature. On the other hand, superimposed on the coherent
exchange are incoherent exchange processes, which also have
been observed in the NMR spectra of these hydrides4,6,7. In
the case of a HD pair, these incoherent processes correspond
to H/D scrambling between the two different molecular sites in
which the pair is located. In contrast to the quantum exchange,
the incoherent exchange leads to a magnetic equivalence of the
coupled hydrogen nuclei, i.e., to line broadening and coales-
cence. This process also leads to characteristic line shape
changes in INS spectra2 and affects the results ofp-H2 induced
nuclear spin polarization experiments.8 These line shape
changes can be described quantitatively in terms of the quantum-
mechanical density matrix formalism developed by Alexander9

and Binsch,10 where only the nuclear spin degrees of freedom
are treated quantummechanically and the spatial degrees of
freedom (bath coordinates) are treated via phenomenological
rate constants. The advantage of this formalism is that it is
directly comparable to the NMR experiment, because NMR
always measures the projection of the molecular system onto
the spin system. Therefore it is possible to project the complex
spatial dynamics of the problem onto these phenomenological
rate constants that are measured in the NMR experiment. Thus
a more detailed theory in the future only needs to reproduce
these rate constants but not the NMR spectra from which these
constants were extracted. We note that the phenomenological
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rate constants in the Alexander-Binsch formalism have recently
been interpreted theoretically by Szymanski.11

The dynamic range of NMR for the study of these tunnel
processes is limited by the size of the typical frequency
differences of the NMR method used. For the line shape
analysis of 1H NMR spectra this means that for a typical
spectrometer a range of less than approximately 10 kHz is
accessible in liquids. This range could, in principle, be extended
by studying dipolar interactions in solid state1H NMR spectra,
which are typically of the order of several tens of Kilohertz.
However, in practice there exist several problems, which render
this approach not very attractive: On the one hand, to avoid
problems in the interpretation of the spectra caused by homo-
geneous broadening from bulk protons, one would prefer to
study well-localized isolated proton pairs. On the other hand,
however, since the spin wave functions of these proton pairs
are symmetric under coherent or incoherent exchange (in the
solid state, the chemical shift differences of protons are small
compared to dipolar interactions to render the protons different),
it would not be possible to detect the various exchange processes
in the dipolar spectrum. Therefore, at least a third proton has
to be employed, which renders the remaining two protons
inequivalent and thus destroys the permutation symmetry.
Since, due to their low mass, only hydrogen isotopes exhibit

this type of coherent tunnel couplings, the question arises
whether pairs of deuterons can be used instead of protons to
increase the dynamic range accessible by NMR spectroscopy.
This will obviously not be the case for2H liquid state NMR,
because the typical spectral range is on the order of 1.5 kHz.
However in the solid state, because deuterons are quadrupole
nuclei, they exhibit electric quadrupolar interactions which are
typically on the order of 100 kHz and for nonoriented samples
give rise to the well-known line shape features in solid state2H
NMR spectra.12,13 2H solid state NMR is particularly well suited
for the investigation of exchanging deuterons, because the
anisotropy of the quadrupole interaction typically found for these
nuclei is a very sensitive probe for any type of nuclear motions
inside the sample. Since the quadrupole interaction reflects the
symmetry of the electric field gradient tensor at the position of
the nucleus studied, it is a very efficient measure of its electronic
binding characteristics.
In this paper, we explore the possibility of extracting exchange

couplings (coherent rotational tunnel splittings) as well as rate
constants of the incoherent exchange of suitably labeled
transition metal polyhydrides from solid state2H NMR in the
regime up to 100 kHz using the Alexander-Binsch theory. We
note that this theory has been applied recently in order to
describe the2H NMR spectra of deuterated methyl groups14d

in ordered samples (single crystals) in the presence of coherent
and incoherent rotations. As single crystals suitable for2H NMR
are not easily available in the case of transition metal polyhy-
drides, we are especially concerned in calculating spectra of
non-oriented samples (crystalline powders). We are mainly
concerned with the discrimination between coherent tunneling
and incoherent exchange processes, both of which can be present
in the sample under investigation. While in general this can
easily be achieved for the2H NMR spectra of single crystals or
liquid samples, this can be a very difficult task in the case of
nonoriented samples, because of the distribution of resonance
frequencies in these spectra.
The rest of this paper is organized as follows: After a brief

discussion of the relevant terms in the Hamiltonian of two
coupled deuterons, a short summary of the generalized Alex-
ander-Binsch formalism including a general form of the
incoherent self-exchange operator is given. Next follows a short
description of the numerical methods used for calculating the

spectra, and then some typical numerical results are shown and
discussed. For the convenience of the reader we have included
in Tables 1, 2, and 3 Hilbert space base functions, matrix
representations, eigenvalues, and eigenvectors of the combined
quadrupolar and quantum exchange Hamiltonian of a D2-system.

Theory

A system of two hydrogen atoms (either1H or 2H) bound to
a transition metal is studied. The dihydrogen rotation then
involves a barrier but remains a quantum process similar to the
case of free dihydrogen, involving delocalized rotationalp-H2

ando-H2 state pairs. The quantum rotation can be characterized
by a rotational tunnel frequency corresponding at low temper-
atures to the energy splitting of the lowest rotational state pair.
There are two limiting cases: Either the two hydrogen atoms
form a dihydrogen state, which is only loosely bound to the
metal and behaves more or less like a free hydrogen molecule,
or in the other extreme, each hydrogen is directly bound to the
metal, leading to a dihydride.
A schematical picture of these exchange processes is depicted

in Figure 1. For the1H case, unusually largeJ-couplings were
observed in these compounds, which have been identified as
exchange couplings by Weitekamp and Zilm,5 arising from the
fact that the spatial symmetry of the wave functions imposes
restrictions on the allowed combinations of spin and spatial wave

Figure 1. Scheme of coherent and incoherent exchange processes in
a Me-D2 system for various configurations. Left column: symbolic
shape of potential. Middle column: configuration A, deuteron 1 is on
the left side, and deuteron 2 is on the right side, corresponding to
subspace A the of composite Liouville space. Right column: config-
uration B, deuteron 2 is on the left side, and deuteron 1 is on the right
side, corresponding to subspace B the of composite Liouville space.
Top row: dihydride, deuterons are tightly bound to the metal, deep
potential depth and small tunnel splitting. Middle row: dihydrogen,
deuterons form bonds of medium strength to the metal and to each
other, intermediate potential depth and tunnel splitting. Bottom row:
dihydrogen, deuterons are only weakly bound to the metal and tightly
bound to each other, shallow potential and large tunnel splitting.X12 is
the coherent tunnel splitting, which can be visualized as a rotation of
the deuterons with frequencyX12 between the two potential minima in
each configuration, taking place only in one subspace of the composite
Liouville space.kAB, kBA are the rates of incoherent exchange of the
deuterons between configurations A and B, which connect the different
subspaces of the composite Liouville space.

TABLE 1: Hilbert Space Base Functions

|b1〉 ) |++〉 |b2〉 ) |+0〉 |b3〉 ) |+-〉
|b4〉 ) |0+〉 |b5〉 ) |00〉 |b6〉 ) |0-〉
|b7〉 ) |-+〉 |b8〉 ) |-0〉 |b9〉 ) |- -〉
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functions (antisymmetrizing postulate). As was already realized
by Dirac,15 for a system of two coupled spin-1/2 particles, the
spin alone is able to characterize the four lowest eigenstates of
the system, and therefore he introduced a spin exchange operator
Vexch acting on the spin functions alone. Except for the trivial
absolute shift of the energies byJexch/4, the spin exchange
operator acts as the usual spin-spin coupling Hamiltonian used
in NMR. Thus, both Hamiltonians are indistinguishable, and
in NMR their sum will always be observed. Therefore, the
exchange couplingJexch can be combined with the normal
magnetic spin coupling constantJmagn to an effective coupling
constantJ giving the total energy between the nuclear triplet
and singlet spin states of a pair of two hydrogen nuclei, i.e.

For deuterons, however, the spin-spin coupling Hamiltonian
and the tunnel Hamiltonian are no longer equivalent and can
be distinguished due to their different energy spectrum, and thus
the tunnel splitting can be directly measured by NMR, as has
been shown in several2H NMR studies of deuterated methyl
group tunneling by solid state NMR14. Note: to account for
this difference, in the following the exchange coupling of the
two deuterons is labeled asX12.
In parallel to this coherent exchange or tunneling of the two

deuterons, there can exist a second kind of process, the
incoherent exchange of the two deuterons. Characteristic for
coherent tunneling is that the Hamiltonian of the spin system
does not depend explicitly on the time during the evolution of
the spin dynamics, i.e. all interactions with external bath degrees
of freedom are negligible. However, for example due to
molecular motions, vibrations, or reorientations, the Hamiltonian
itself can change in the course of the NMR experiment, which

will give rise to some form of relaxation as long as the
correlation times of the motion are on the order of the energy
differences in the Hamiltonian. The phenomenon of incoherent
exchange of two protons or deuterons or of a proton and a
deuteron between different atomic sites of polyatomic molecules
has been observed in various compounds, for example in
porphyrins and chlorins, where the incoherent exchange dynam-
ics has been followed by liquid and solid state NMR.16a-c

Moreover, there exists another type of motion, which has been
investigated recently16d and which can be depicted as follows.
The energetically highly excited states of the molecule exhibit
only small thermal populations, due to their Boltzmann factors.
In general, these states exhibit a much larger tunnel splitting
than do the more populated states of lower energy, which will
result in a fast-evolving spin dynamics. If the lifetime of these
states is sufficiently short, they will not contribute to the average
tunnel frequency. However, the fast spin dynamics will lead
to an apparently incoherent exchange of the two hydrogens with
an exchange rate which is mainly determined by the population
rate of this state. We wish to remark that in systems of four or
more coupled spins it is possible to distinguish this type of
apparently incoherent process from the previous ones.

Hamiltonians and Coherent Dynamics. The NMR Hamil-
tonian of a system of two deuterons in the solid state can be
written in the following form:

In this equation,ĤCS is the shielding Hamiltonian,ĤX is the
tunneling Hamiltonian,ĤQ is the quadrupole Hamiltonian,ĤD

TABLE 2: Matrix Representation of Tunnel and Quadrupole Hamiltonian a

Ĥ ) [X12 + 2/3Q 0 0 0 0 0 0 0 0

0 -1/3Q- q 0 X12 0 0 0 0 0

0 0 2/3Q 0 0 0 X12 0 0

0 X12 0 -1/3Q+ q 0 0 0 0 0

0 0 0 0 X12 - 4/3Q 0 0 0 0

0 0 0 0 0 -1/3Q+ q 0 X12 0

0 0 X12 0 0 0 2/3Q 0 0

0 0 0 0 0 X12 0 -1/3Q- q 0

0 0 0 0 0 0 0 0 X12 + 2/3Q

]
a Q ) (1/2) (q1 + q2); q ) (1/2) (q1-q2 ).

TABLE 3: Eigenvalues and Eigenfunctions of the Combined Tunnel and Quadrupole Hamiltonian. They Split into Two
Singlets, Two Doublets and One Triplet

E1,2,3) 2/3Q+ X12 |++〉, |- -〉,
|+ -〉 +|- +〉

x2

E4,5 ) -1/3Q-xX122 + q2
cos(æ)|-0〉 -sin(æ)|0-〉

x2
,
-sin(æ)|0+〉 + cos(æ)|+0〉

x2

E6,7 ) -1/3Q+xX122 + q2
cos(æ)|0-〉 +sin(æ)|-0〉

x2
,
sin(æ)|+0〉 +cos(æ)|0+〉

x2
E8 ) -4/3Q+ X12 |00〉

E9 ) 2/3Q- X12
-|+ -〉 +|- +|〉

x2

tan(æ) )
q+xX122 + q2

X12

J) Jmagn+ Jexch (1)

Ĥ ) ĤCS+ ĤX + ĤQ + ĤJ + ĤD (2)
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is the dipolar coupling Hamiltonian, andĤJ is the spin-spin
coupling Hamiltonian. The five Hamiltonians in the presence
of a strong magnetic field can be written as:

In these equations,ν1 andν2 are the chemical shift values of
the two spins,X12 is the coherent tunnel frequency,P̂(Î1, Î2) is
the permutation operator17 of the two spinsÎ1 andÎ2, D12 is the
dipolar coupling among the spins,q1 andq2 are the quadrupole
couplings of the spins, andJ12 is the value of the spin-spin
coupling. While for protons, the spin-spin coupling Hamil-
tonian and the tunneling Hamiltonian are of the same form,
giving rise to an effectiveJ-coupling as mentioned above, this
is not the case forI > 1/2. In general, the various frequencies
appearing in the Hamiltonians of eqs 2 and 3 can be time
dependent, for example due to molecular motions or chemical
reactions.
In a first approximation in the solid state, we can restrict

ourselves to consider only the leading interactions, i.e. the
quadrupole interaction and the coherent tunnel exchange:

In contrast to the coherent exchange interaction, the quad-
rupole interaction depends on the relative orientation of the
magnetic field to the quadrupole tensor. Since both deuterons
can be assumed to be chemically equivalent, their quadrupole
tensors are related by a geometrical transformation. If we
assumeC2V symmetry of the Me-D2 group by neglecting
possible crystal effects, one of the three principal axes of the
quadrupole tensor will be perpendicular to the Me-D2 plane,
and the axis bisecting the bond angle (2R) will be a 2-fold
symmetry axis (C2). A coordinate system (see Figure 2) is
chosen in such a way that thez-axis bisects the bond angle and
that they-axis is perpendicular to the bond plane. The two
quadrupole tensors are related by a rotationR with angles(â

around they-axis of the coordinate system, i.e. in the given
coordinate system the following equations for the quadrupole
tensorsQ61 andQ62 are obtained (Q6PAS: quadrupole tensor in its
principal axis system)

with the rotation matrixR given as

The angleâ depends on the strength of the electric field
gradients caused by the metal and by the other deuterons. In
particular in the case of a dihydride,â will be half the bond
angle (i.e.â ) R), while for a pure dihydrogen complex,â )
π/2. From this we get forQ61 andQ62 (qxx, qyy, andqzz are the
principal values of the quadrupole interaction):

If b is a unit vector pointing into the direction of the magnetic
field

the quadrupole transition frequencies as a function of the polar
angles can be calculated by the scalar product:

The coherent tunnel exchange can be described by the
permutation operatorP̂(Î1, Î2) times the tunnel frequencyX12,
i.e.:

In the product base of the two spins, the matrix representation
of P̂(Î1, Î2) can be easily calculated from

In the absence of incoherent exchange processes, the whole
dynamics of the system can be described directly in the Hilbert
space ofĤ, and thus the spectra can be calculated directly from
Ĥ. However, as soon as incoherent exchange mechanisms are
present, this approach is no longer valid. A method for tackling
this type of problems is the Alexander-Binsch formalism
described in the next section.
Generalized Alexander-Binsch Theory and Incoherent

Dynamics. In this section a formulation of coherent and
incoherent exchange processes of dihydrogen and dideuterium
is given, using a framework which is a generalized version of
the original Alexander-Binsch theory for the calculation of
exchange broadened NMR spectra. The idea behind this theory
is to represent a fluctuating time dependence of the parameters
in the Hamiltonian of eq 3 as an exchange between several
molecular configurations (denoted by capital letters A, B,...)

Figure 2. Coordinate system used for describing the relative spatial
orientation of the two quadrupole tensors of deuterons D1 andD2. C2V
symmetry is assumed for the deuterons, and therefore one of the
principal axes (qyy) is parallel toy. The quadrupole tensor of deuteron
2 is obtained by a 180° rotation around thez-axis of the coordinate
system. For describing the relative orientations of the tensors it is more
convenient to use the angle between thez-axis and theqzz-component.
Note that in generalR * â.

ĤQ ) q1(3Iz1
2 - 2)+ q2(3Î z2

2 - 2) (3)

ĤCS) ν1Î z1 + ν2Î z2

ĤX ) X12P̂(Î1,Î2)

ĤD ) D12(3Î z1Î z2 - Î1Î2)

ĤJ ) J12Î1Î2

Ĥ ) ĤCS+ ĤX (4)

Q61 : ) R Q6PASR
-1 (5)

Q62 : ) R-1Q6PASR

R ) (cos(â) 0 -sin(â)
0 1 0
sin(â) 0 cos(â) ) (6)

Q612
)

(qxx cos2(â) + qzzsin2(â) 0 ((qxx - qzz) cos(â) sin(â)
0 qyy 0
((qxx - qzz) cos(â) sin(â) 0 qxx cos2(â) + qzzsin2(â)

)
(7)

b ) B0/B0 ) (sin(ϑ) cos(æ), sin(ϑ) sin(æ), cos(ϑ)) (8)

q12(ϑ,æ) ) bQ612
b (9)

ĤX ) X12P̂(Î1, Î2) (10)

P̂(Î1, Î2)|µν 〉 ) |νµ〉 (11)
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with an exchange rate which is determined by the rate of the
fluctuation. In the following, for brevity these molecular
configurations are called states.
The model of an asymmetric intermolecular exchange be-

tween different dihydrogen states is considered, for example a
bound state and a free state or two different bound states. For
this system the effects of intramolecular self-exchange (i.e.
permutation of the two hydrogen atoms) in the various states
on the density matrix and the resulting spectra are calculated.
The various dihydrogen states (n) are characterized by their

basic spin HamiltoniansĤn. From these state Hamiltonians the
state Liouville superoperators are constructed following the
procedure given by Ernst et al.18(Ên is the unit matrix of Hilbert

spacen, Ĥ̃ is the transpose ofĤ):

The different states are described as vectors|Fn) in a
composite Liouville space which correspond to the standard
density matrix in Hilbert space. The dynamics of these vectors

is governed by linear superoperatorsŴ̂n. It is assumed that all
exchange processes are first-order reactions which can be
described by simple rate constantskmn. In the following, only
two states are considered (n) 1, 2) and the equations of motion
of the density matrices in the two states are

The superoperatorŴ̂n ) R̂̂n + iL̂̂n describes the dynamics in

one state. It consists of a coherent termL̂̂n, the Liouville
superoperator of staten, stemming from the HamiltonianĤn,

and an incoherent term,R̂̂n, the relaxation superoperator in
staten. The equation for the density matrix can be formulated
as a matrix equation in composite Liouville space, introducing
the overall density matrix|F), which is the direct sum over all
sites.

The different states are connected by the exchange super-

operatorK̂̂, which can be constructed by forming the direct
product of the exchange matrix that describes the kinetics with

the identity matrixÎ̂d of one of the individual subspaces of the
composite Liouville space:

This gives the following equation for the overall density
matrix:

If the system is treated at finite temperature, the equilibrium
density matrix|F) will be different from zero, and eventually
the Liouville-von Neumann equation is obtained as the kinetic
equation of the density matrix

where M̂̂ has been introduced as the dynamic superoperator.
The formal solution of this equation is

The Incoherent Self-Exchange Superoperator for a Double
Hydrogen Transfer. A particularly simple exchange problem
is the incoherent mutual exchange of two equal nuclei, for
example the mutual exchange of two protons or two deuterons,
corresponding to a permutation of the two nuclei which
exchanges the chemical shift values and quadrupole couplings
in eq 3. In this case, because of the symmetry of the problem,
it follows thatk12 ) k21 ) k.
The Hamiltonian of the system consists of three parts: the

individual Hamiltonians of the spinsÎ1, Î2, which are most easily
described by assigning them to molecular sitesm )1, 2, i.e.;
Ĥm(În), Hamiltonian of spinn in sitem; a HamiltonianĤ12(Î1,
Î2) representing the coupling between the spins. The incoherent
process is then a permutation of the individual Hamiltonians
with ratek, i.e.:

The coupling Hamiltonian, which is symmetric in the two
spins, is not affected by the permutation, i.e.: [P̂(Î 1, Î 2),
Ĥ12(Î1, Î2)] ) 0. Thus the incoherent process can be regarded
as a fluctuation betweenĤA and ĤB with the ratek:

The equations of motion for the density operator (eq 13)
reduce to

In Liouville space, the permutation of the two nuclei is

described by a permutation superoperatorP̂̂12, which is con-
structed from the permutation operator in Hilbert spaceP̂(Î1,
Î2), using the rule for unitary transformation superoperators
given in ref 18 (P̂(Î1, Î2)*, complex conjugate ofP̂(Î1, Î2)):

Since P̂̂12 is a permutation superoperator, applying it twice
gives the identity

The permutation symmetry of the nuclei is then expressed
as

|F(t)) ) exp(-M̂̂t)|F(0)- F∞) + |F∞) (19)

Ĥ1(Î1) Ĥ2(Î1)

T
k

Ĥ2(Î2) Ĥ1(Î2)

(20)

ĤA ) Ĥ1(Î1) + Ĥ2(Î2) + Ĥ12(Î1, Î2) (21)

ĤB ) Ĥ2(Î1) + Ĥ1(Î2) + Ĥ12(Î2, Î1)

d
dt
|FA) ) -Ŵ̂A|FA) - k |FA - FB) (22)

d
dt
|FB) ) -Ŵ̂B|FB) - k |FB - FA)

P̂̂12 ) P̂(Î1, Î2) X P̂(Î1, Î2)
* (23)

P̂̂12P̂̂12 ) Î̂d (24)

Ŵ̂A ) P̂̂12Ŵ̂BP̂̂12
-1 (25)

L̂̂n ) Ĥn X Ễn - Ên X Ĥ̃n, n) A, B, ... (12)

d
dt
|F1) ) -Ŵ̂1|F1) - k12|F1) + k21|F2) (13)

d
dt
|F2) ) -Ŵ̂2|F2) - k21|F2) + k12|F1)

|F) ) |F1 x |F2) (14)

Ŵ̂) Ŵ̂1 x Ŵ̂2 (15)

K̂̂ ) (-k12 k21
k12 -k21)X Î̂d (16)

d
dt
|F) ) -Ŵ̂|F) - K̂̂|F) (17)

d
dt
|F) ) -(Ŵ̂+ K̂̂)|F - F∞) ): -M̂̂|F - F∞) (18)
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In a matrix representation the equation of motion for the
density matrix in composite Liouville space has the following
form.

This equation can be transformed by applying the superop-
erator

into

In a second step, the symmetricFg (gerade) and antisymmetric
Fu (ungerade) linear combinations ofFA and P̂̂12FB are formed
and the differential equations are decoupled:

Thus a projection of the complete Liouville space onto the
symmetric Lg and antisymmetricLu subspace is applied.
Because of the symmetry of the states, the initial condition in

normal NMR experiments will be|FA(0)) ) P̂̂12|FB(0)) and
thus the antisymmetric density matrix is zero,Fu ) 0 initially
and hence for all times, and only the symmetric subspaceLg
has to be considered in the time evolution of the density matrix,
which gives the following equation forFg

where the self-exchange superoperatorK̂̂ has been introduced
as

This formal derivation of the self-exchange can be inter-
preted in a physical picture. In the symmetric linear combina-
tion of the individual density matrices, the two spins have lost
their individuality. However, the individual Hamiltonians are
still distinct and correspond usually to different molecular or,
more generally, different spatial sites. Thus, the labeling of
the spins is done via these sites (1,2); hence, it is called site
labeling.
To understand the physical properties of the self exchange

operator, it is most useful to represent the permutation operator
P̂(Î1, Î2) in the permutation symmetry-adapted base of the Hilbert
space (noted by′). The permutation operator in this base,P̂′-
(Î1, Î2), is diagonal, with matrix elements+1 for even (gerade)
and-1 for odd (ungerade) states.17

The matrix elements of the permutation superoperator in
Liouville space,P̂′12, are (for simplicity double indices from

the Hilbert space base are used for the Liouville space)

From this it follows for the diagonal elements ofP̂̂12 that
they are either+1 if states of the same symmetry are connected
(µ ) ν) or -1 if states of different symmetry are connected (µ
* ν). The matrix elements of the self-exchange superoperator,
eq 31, are given as

Thus in this base, the self-exchange superoperator is also
diagonal, with matrix elements 0 if states of the same symmetry
are connected and matrix elements-2k if states of different
symmetry are connected. This result can be interpreted in a
simple physical picture: In the symmetry-adapted base, the
self-exchange operator acts as a relaxation operator for
coherences created between the states of different symmetry,
which relax with the rate-2k.
The essence of the Alexander-Binsch formalism described

above is that the whole kinetics of the Me-D2 system can be
described by two empirical constants, the incoherent exchange
constantk12 and the coherent tunnel exchange constantX12. In
general these two constants represent the thermal average of
the tunnel splitting and the exchange constants, respectively,
of the populated levels and thus will exhibit a nontrivial
temperature dependence (pê(T) is the thermal population of level
ê):

Numerical Methods. The nine Zeeman product functions
of the two-spin system were chosen as base functions for the
matrix representation of the Hamiltonians. From these, the 81
Liouville space base functions of the Liouville space were
constructed and the Liouville, exchange, and relaxation operators
were expressed in these base functions and combined to the

dynamic superoperatorM̂̂. To reduce the computational prob-
lem, these base functions were arranged according to their

multiple quantum order, which transformsM̂̂ into a block
diagonal form. In the calculations we started with the initial
condition that a 90° pulse was applied to the spin system in
thermal equilibrium, and thus the initial density matrix|F(0))
is given by|Fx):

d
dt|FAFB )) (-Ŵ̂A - kÎ̂d kId

kId -Ŵ̂B - kÎ̂d)|FAFB ) (26)

(Î̂d 0

0 P̂̂12) (27)

d
dt|FAP̂̂12FB )) (-Ŵ̂A - kÎ̂d kP̂̂12

kP̂̂12 -Ŵ̂A - kÎ̂d
)|FAP̂̂12FB ) (28)

d
dt|FgFu)) d

dt|FA + P̂̂12FB
FA - P̂̂12FB ) )

(-Ŵ̂A - kÎ̂d + kP̂̂12 0

0 -Ŵ̂A - kÎ̂d - kP̂12)|FgFu) (29)

d
dt
|Fg) ) (-Ŵ̂A - kÎ̂d + kP̂̂12)|Fg) ) -(Ŵ̂A + K̂̂)|Fg) (30)

K̂̂ ) -k(Î̂d - P̂̂12) (31)

P̂′(Î1,Î2) :) (-1)µδij,

µ ) 0 if state|i〉 is gerade, 1 if ungerade (32)

(P̂̂′12)ij ,kl ) (P̂′(Î1,Î2) X P̂′(Î1,Î2)
*)ij ,kl (33)

) (-1)µδij(-1)
νδkl

) (-1)µ+νδijδkl

) {+1 µ ) ν
-1 µ * ν

(K̂̂′)ij ,kl )(-k(Î̂ ′d - P̂̂′12))ij ,kl (34)

) -k(δijδkl -(-1)
µ+νδijδkl)

) -kδijδkl(1- (-1)µ+ν)

) {0 µ ) ν
-2k µ * ν

k12(T) ) ∑
ê

pê(T)k12ê (35)

X12(T) ) ∑
ê

pê(T)X12ê

|F(0))) |Fx) ) |Ix1 + Ix2) (36)
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The density operator of the system and theM̂̂ superoperator
were expressed in the base of the Liouville space described
above. The resulting spectra were calculated by diagonalization

of M̂̂ using a routine from LAPACK19 and transforming the
detection operator and the density operator into the eigenbase

of M̂̂. The powder averages were calculated by integrating
over a grid of 128× 128 equally spaced polar anglesæ andϑ.

Results and Discussion

In the following, we want to present the results of our
calculations. For both deuterons, an axial symmetric quadrupole
tensor (η ) 0) with qzz ) 70 kHz was used, which we have
estimated from the room temperature spectra of the Ru-D2

complexes currently under experimental observation (see Dis-
cussion). The spectra were calculated for different relative
orientationsâ of the two tensors, varying from 2â ) 0° to 2â
) 90° . Since for 2â ) 0° the quadrupole tensors of the two
deuterons are collinear, the spectra are influenced by neither
coherent nor incoherent exchange. Before some typical nu-
merical results are shown, some general properties of the results
will be discussed. First it should be noted that the principal
difference between a coherent and an incoherent exchange is
that the coherent exchange will, in general, lead to a shift of
the energy levels and thus to a splitting of the transition
frequencies, while the incoherent exchange will cause a line
broadening or line coalescence of the transition frequencies.
While these effects will be most pronounced in single-crystal
spectra, where only few transition frequencies are present, taking
the powder average will inevitably cause a blurring of these
differences. Thus, for discussing the principal differences of
coherent versus incoherent exchange, it is most suitable to
calculate single-crystal spectra, while for real life samples, one
has to calculate the powder spectrum. The question is whether
these spectra will show enough characteristic features to
distinguish between coherent and incoherent exchanges.

Results for Single Crystals.For purely incoherent exchange,
the spectra exhibit the typical incoherent exchange scenario:12b

line broadening of the NMR lines for small exchange rates; line
coalescence at exchange rates on the order of the difference of
the quadrupole splitting; again line narrowing at fast exchange
rates; full motional averaging of the difference of the quadrupole
splitting in the spectrum at very fast exchange rates.

Figure 3 shows the effects of purely coherent tunneling on
the spectra for three different relative orientations of the
quadrupole tensors. The external magnetic field is chosen
parallel to the principal axis corresponding to thez-component
of the quadrupole tensor of deuteron 1. While the spectra for
2â ) 0° are not affected by the exchange, for the other angles
the spectra exhibit a distinctively different behavior. For small
coherent exchange frequencies, a splitting of the lines into
doublets is observed. This splitting increases with the coherent
exchange frequency. For coherent exchange frequencies on the
order of the quadrupole splitting, the intensity ratio of the lines
changes and typical higher order NMR spectra are observed,
where the main line intensities are at the inner transitions.
Moreover, the splitting of the inner pair of lines narrows, while
the splitting of the outer lines increases with the coherent
exchange frequency. However, for coherent exchange frequen-
cies much larger than the difference of the quadrupole coupling
constants, once more a simple two-line spectrum is observed,
which is identical with the corresponding spectrum for incoher-
ent exchange. The differences between coherent exchange and
incoherent exchange are most pronounced for rates on the order
of the quadrupole splitting. The incoherent exchange broadens
the lines so strongly that their relative amplitude compared to
the amplitude of the spectra for low or high rates is close to
zero in the coalescence regime. The coherent tunneling,
however, leads to splittings of the lines into doublets, and in
particular the relative amplitude of the central lines is only
weakly affected by the tunneling.

Figure 4 displays the effect of the simultaneous presence of
coherent and incoherent exchange. The spectra show the effect

Figure 3. Simulation of coherent exchange (tunneling) in the2H NMR spectra of a single crystal for three different relative orientations of the two
quadrupole tensors. The external magnetic field is parallel to the principal axis corresponding toqzzof the first tensor.qzz) 70 kHz,η ) 0, X12 )
0, 2, 32, 128, 512, 2048, 8192 kHz. In contrast to the incoherent exchange, the spectra exhibit splittings instead of broadening. The spectrum for
X12 . ∆q is identical to the fast incoherent exchange spectrum.
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of incoherent exchange for different coherent exchange frequen-
cies. While for the lowest coherent exchange frequency the
effect of incoherent exchange is immediately visible in the
spectra, for increasing coherent exchange frequency the incoher-
ent exchange rate has to be increased to have a visible effect
on the spectra. In particular the broadening of the lines starts
for incoherent exchange rates on the order of the coherent
exchange frequency, while for incoherent exchange rates far
below the coherent frequency, the effects of the incoherent
exchange are not visible. In other words, the shape of the
spectra is determined by the relative speed of coherent versus
incoherent exchange. Moreover this faster rate must be at least
on the order of the difference of the quadrupole splitting to have
an effect on the spectra.
Results for Powder Samples.The upper part of Figure 5

depicts the effects of incoherent exchange of the two deuterons
as a function of the rotation angle 2â for randomly oriented
powder samples, which are the typical incoherent exchange
spectra known from NMR experiments on various deuterated
systems.17c As in the case of single crystals, the effect of the
incoherent exchange is most pronounced for 2â ) 90° , while
the 2â ) 0° spectra (not shown) are not affected by the exchange
of the deuterons. The exchange first causes a smearing of the

edges of the Pake pattern and then the typical formation of a
narrowed Pake pattern, whose asymmetry parameter depends
on the angle between the two tensors. The lower part of Figure
5 displays the results of the same calculations for the case of
coherent exchange of the two different deuterons. While for
small or large coherent exchange frequency these spectra are
practically indistinguishable from the spectra of incoherent
exchange, there are pronounced differences for intermediate
spectra, where the coherent exchange frequency is on the order
of the quadrupole coupling. For these spectra, the satellite
transitions, which have appeared in the single-crystal spectra,
lead to spectral contributions outside the range of the spectra
without coherent exchange. Moreover in this intermediate
range, the singularities in the spectra appear much sharper than
the singularities in the corresponding incoherent exchange
spectra.
Figure 6 finally shows the calculation of powder spectra, were

both coherent and incoherent exchange are simultaneously
present. As has already appeared in the corresponding calcula-
tions of single-crystal spectra, for this type of combined
exchange the relative sizes of coherent tunnel versus incoherent
exchange rate determine the shape of the NMR spectra. If the
coherent exchange frequency is small (Figure 6a), i.e.X12 ,

Figure 4. Simulation of simultaneous incoherent and coherent exchange (tunneling).qzz) 70 kHz,η ) 0, k12 ) 0, 8, 32, 128, 512, 2048 kHz. The
external magnetic field is parallel to the principal axis corresponding toqzz of the first tensor. The second tensor is rotated with 2â ) 90° with
respect to the first tensor. The relative size of coherent and incoherent exchange rates determine the shape of the spectral lines.
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Q, the spectra exhibit exactly the same behavior as the spectra
without coherent exchange (Figure 5c). On the other hand, for
a fast coherent exchange (X12 . Q ), the spectra do not depend
on the incoherent exchange (Figure 6f). In the intermediate
regime,X12 ≈ Q, the spectra exhibit a rather complicated line
shape, which nevertheless still shows the sharp features of the
coherent tunneling line shape. Again, for all coherent exchange
frequencies, the spectra at fast incoherent rates are identical,
and only for intermediate exchange rates an effect on the spectra
is visible.
Discussion.To summarize the results of the numerical

calculations: It has been shown that there are pronounced
differences between coherent and incoherent exchange of two
deuterons in the2H NMR spectra of these deuterons. In
particular, the former leads to a splitting of the spectral lines,
while the latter leads first to a broadening and later to a

narrowing of the lines, which can be interpreted as a relaxation
of coherences between states of different symmetry with respect
to particle permutation. It has been found that these differences
are most pronounced for coherent exchange frequencies which
are on the order of the quadrupole coupling constant. Thus by
investigation of this range of intermediate tunnel splitting, we
expect that it is possible not only to distinguish between coherent
and incoherent exchange but also to determine the size of the
tunnel splitting. The actual effect on the spectra depends
strongly on the configuration of the quadrupole tensors associ-
ated with the two deuterons. If these tensors are collinear, the
spectra are affected neither by coherent nor by incoherent
exchange. If, on the other hand, the two tensors are rotated
90° relative to each other, the effect is most pronounced. The
simulations show that the effects are best visible in single

Figure 5. Effects of coherent and incoherent exchange on the2H NMR spectra of a nonoriented powder sample (powder spectra) for the same
three relative orientations of the quadrupole tensors as in Figure 3. Upper row: simulation of incoherent exchange.qzz ) 70 kHz,η ) 0, k12 ) 0,
2, 32, 128, 512, 2048, 8192 kHz. The exchange mainly leads to a smearing of the edges of the Pake pattern, which for higher rates narrows to the
average spectrum. Lower row: simulation of coherent exchange:qzz) 70 kHz,η ) 0,X12 ) 0, 2, 32, 128, 512, 2048, 8192 kHz. In the intermediate
range of coherent exchange frequencies, there are satellite lines, which clearly distinguish the spectra from the corresponding incoherent spectra.
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crystals. However, also for powdered samples the differences
should be clearly visible in experimental spectra.
The remaining question is thus whether it is feasible to detect

these processes in actual experiments. In such experiments
several difficulties must be overcome. On the one hand, the
coherent exchange frequency, which depends very strongly on
the depth of the hindering potential for the rotation, must fall
into the “proper” range of frequencies, as discussed above. As
simple estimations with a one-dimensional hindered rotor show,
employing a 2-fold potential with a cosine type of angular
dependence, only for a very small range of the potential depth,
the coherent exchange frequency is in the NMR frequency
regime. In particular, changing the potential depth by a factor
of 10 in this NMR sensitive regime leads to a change of the
coherent tunnel frequency by a factor of 1011. We expect this
strong dependence to be at least partially weakened by the fact
that for the considered transition metal dihydrides, the radial
potential varies weaker with the radius, as compared for example
to covalently bound deuterons in tunneling methyl groups,
leading to a weaker dependence of the tunnel splitting on the
potential depth or the deuteron distance. However, because of

the small accessible frequency window, choosing the right
substance is no trivial task.
The biggest experimental difficulty, however, stems from

sensitivity problems caused by low deuterium abundance. We
have performed preliminary2H-NMR experiments on a selec-
tively deuterated transition metal dihydride (molecular for-
mula: C52H48ClD2F6P5Ru, MW ) 1082 g/mol), which, to the
best of our knowledge, is the first selectively deuterated solid
transition metal dihydride. Due to its high molecular weight,
the amount of deuterium in the sample is rather low, resulting
in a poor NMR sensitivity of the sample, as compared for
example to organic compounds where tunneling in deuterated
methyl groups14 (e.g. aspirin-CD3) has been studied. There,
the amount of deuterium in the sample can be estimated to be
about 5-10 times higher than in the transition metal dihydride.
The room-temperature2H-NMR spectra of the transition metal
dihydride compound exhibited a motionally averaged line with
a width of about 50 kHz and T1 relaxation times of several
seconds, which are comparable to methyl groups. Thus the
amount of deuterium can be used to quantitatively compare the
sensitivity of our transition metal dihydride sample to the

Figure 6. Simulation of simultaneous incoherent and coherent exchange (tunneling) for the same relative orientations and parameters: 2â ) 90°.
qzz) 70 kHz,η ) 0, X12 ) 0, 8, 32, 128, 512, 2048 kHz as in Figure 5. The relative size of coherent and incoherent exchange rates determine the
shape of the spectral lines. Note in particular that forX12 or k12 . ∆q, the shape of the spectra does not depend on the second kind of exchange
process.
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deuterated methyl groups, resulting in approximately 5-10 times
lower sensitivity. From this lower sensitivity it follows that
artifacts, caused for example by dead time problems or acoustic
ringing, will have a much stronger effect on the low-temperature
2H-NMR spectra of our compound, as compared to the deuter-
ated methyl groups. However, this should not make the
experiments unfeasible. Thus we finally wish to conclude that
the proposed usage of a deuterated transition metal dihydride
for the study of coherent tunnel frequencies in the regime of
105 Hz is feasible.
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